ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Edward M. Mouradian, Louis Baker, Jr.
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 388-394
Technical Paper | doi.org/10.13182/NSE63-A26455
Articles are hosted by Taylor and Francis Online.
The burning temperatures and oxidation rates for uranium and zirconium metals in air were investigated analytically. The calculations were based on the assumption that the metal-oxygen reaction is controlled by atmospheric diffusion. Reaction is assumed to be limited by the rate at which oxygen can diffuse through a nitrogen-rich boundary layer. Expressions for mass transfer were obtained by applying the Lewis relation to accepted heat transfer correlations. Calculations were made for the case of vertical plates (foils), horizontal cylinders (wires), and spheres in both natural and forced convection. Characteristic dimensions ranging from 0.02 to 10 cm and flow velocities up to 3162 cm/sec (70 mph) were considered. Computed burning temperatures were compared with experimental measurements of the maximum temperature reached by burning foils of uranium, zirconium, and a zirconium alloy containing 14.9 wt.% titanium in natural convection. Experimental temperatures with zirconium were higher than calculated values while uranium temperatures were somewhat below theoretical. The calculations, however, correctly described the variation of burning temperature with foil width and appear to be good evidence for the proposed model of burning.