ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
L. E. Beghian, N. C. Rasmussen, R. Thews, J. Weber
Nuclear Science and Engineering | Volume 15 | Number 4 | April 1963 | Pages 375-381
Technical Paper | doi.org/10.13182/NSE63-A26453
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.Nanosecond bursts of monoenergetic neutrons in the range 0.8–1.6 Mev are injected into non-moderating assemblies of bismuth, lead, and natural uranium. The flux in these assmblies is observed to decay exponentially with characteristic nanosecond time constants in good agree-ment with one velocity transport theory, and the known inelastic scattering and absorption cross sections.These experiments serve as a check on the validity of the assumptions of transport theory. The technique also serves as a method for measuring macroscopic inelastic and absorption cross sections directly, without the necessity of making the corrections required in other methods e.g., for double scattering and for the angular distribution.