ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nieh confirmed for the NRC
Earlier today, the U.S. Senate officially confirmed Ho Nieh in a 66–32 vote to serve as a commissioner on the U.S. Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029. All present Republicans, alongside 15 Democrats and one Independent, cast their votes in favor of Nieh, who was nominated by President Trump in July and fills the seat left vacant following the dismissal of former commissioner Christopher Hanson.
NRC details: The commission leading the NRC now comprises four members. Nieh joins Chair David Wright and commissioners Bradley Crowell and Matthew Marzano. One spot remains unfilled after the resignation of Annie Caputo in July. President Trump nominated Douglas Weaver earlier this month to fill Caputo’s seat.
Alan B. Smith
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 74-83
Technical Paper | doi.org/10.13182/NSE07-A2645
Articles are hosted by Taylor and Francis Online.
Differential neutron elastic-scattering cross sections of 197Au are measured from [approximately equal to]4.5 to 10.0 MeV at incident-neutron energy intervals of [approximately equal to]0.5 MeV. These results are combined with previous lower-energy work by the author and associates to form a neutron-scattering database extending from [approximately equal to]0.3 to 10.0 MeV. A few elastic-scattering distributions and total cross sections from the literature are added to it, and the composite is interpreted in terms of optical-statistical, dispersion, and coupled-channels models. The results are compared with models in the literature and with relevant portions of the ENDF/B-VI nuclear data file. A collective rotational model for the prediction of neutron interactions in this mass-energy region is suggested.