ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
Alan B. Smith
Nuclear Science and Engineering | Volume 155 | Number 1 | January 2007 | Pages 74-83
Technical Paper | doi.org/10.13182/NSE07-A2645
Articles are hosted by Taylor and Francis Online.
Differential neutron elastic-scattering cross sections of 197Au are measured from [approximately equal to]4.5 to 10.0 MeV at incident-neutron energy intervals of [approximately equal to]0.5 MeV. These results are combined with previous lower-energy work by the author and associates to form a neutron-scattering database extending from [approximately equal to]0.3 to 10.0 MeV. A few elastic-scattering distributions and total cross sections from the literature are added to it, and the composite is interpreted in terms of optical-statistical, dispersion, and coupled-channels models. The results are compared with models in the literature and with relevant portions of the ENDF/B-VI nuclear data file. A collective rotational model for the prediction of neutron interactions in this mass-energy region is suggested.