ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. T. Ream, R. P. Varnes
Nuclear Science and Engineering | Volume 13 | Number 4 | August 1962 | Pages 325-337
Technical Paper | doi.org/10.13182/NSE62-A26174
Articles are hosted by Taylor and Francis Online.
It was planned to test full scale U02 test elements in the SRE core. Before doing this, an analysis of the transient behavior of the system in part and the whole was carried out. This analysis concerns the problem of determining transient thermal gradients in the Sodium Reactor Experiment core due to the inability of the after-scram braked flow of the sodium to properly cool the U02 fuel test elements. The analysis showed that the UO2 fuel elements could not be irradiated at the desired core position for maximum power density without exceeding the allowable transient thermal gradient limit. It was necessary to shift them to a position of 25% lower power. An experimental scram of the SRE verified these results for the 19-rod cluster type element. It was possible to concentrate the investigation on the region of the core containing the U02 test elements using the assumption that the steady-state relationship between core pressure drop and reactor flow was valid during flow coastdown. Distributed spatial parameter effects were approximated by a “lumped”-parameter model and were incorporated in sets of coupled finite difference equations which were then solved by use of a general purpose dc analogue computer. The transient flow in the test elements were computed from the SRE quasi-steady-state pressure drop as a function of time. The higher sodium outlet temperature in the U02 test element channels results in an elevation head greater than the elevation head in an SRE channel. This nonlinear buoyant force could not be neglected because it significantly increases the transient flow in the U02 fuel element and stabilizes the channel outlet temperature.