ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. C. Hopkins, B. C. Diven
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 169-177
Technical Paper | doi.org/10.13182/NSE62-A26055
Articles are hosted by Taylor and Francis Online.
The ratio of neutron capture to fission cross sections, α, has been measured for U233, U235, and Pu239 at 9 incident neutron energies from 30 kev to 1000 kev. A pulsed and collimated neutron beam is passed through a target placed at the center of a large, cadmium-loaded, liquid scintillator. Capture and fission events are detected by means of their prompt gamma rays; elastic and inelastic scattering events are discarded because of their smaller pulse height. Fission is identified by the delayed pulses produced by capture in the scintillator of the fission neutrons. Corrections are applied for the fission events not followed by delayed neutron pulses and for the effect of background counts. This procedure yields values of 1 + α to an accuracy of 1 or 2%.