ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. C. Hopkins, B. C. Diven
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 169-177
Technical Paper | doi.org/10.13182/NSE62-A26055
Articles are hosted by Taylor and Francis Online.
The ratio of neutron capture to fission cross sections, α, has been measured for U233, U235, and Pu239 at 9 incident neutron energies from 30 kev to 1000 kev. A pulsed and collimated neutron beam is passed through a target placed at the center of a large, cadmium-loaded, liquid scintillator. Capture and fission events are detected by means of their prompt gamma rays; elastic and inelastic scattering events are discarded because of their smaller pulse height. Fission is identified by the delayed pulses produced by capture in the scintillator of the fission neutrons. Corrections are applied for the fission events not followed by delayed neutron pulses and for the effect of background counts. This procedure yields values of 1 + α to an accuracy of 1 or 2%.