ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
R. E. MacPherson, J. C. Amos, H. W. Savage
Nuclear Science and Engineering | Volume 8 | Number 1 | July 1960 | Pages 14-20
Technical Paper | doi.org/10.13182/NSE8-1-14
Articles are hosted by Taylor and Francis Online.
In order to investigate the design and fabrication problems inherent in compact, high-performance heat exchangers for aircraft nuclear propulsion applications, extensive development testing was done by the ANP Division of the Oak Ridge National Laboratory on bifluid (molten salt-NaK) heat exchangers and on liquid metal (NaK-air) radiators. These test units were prototypes of the heat transfer equipment which was to be used in the Aircraft Reactor Test at ORNL. Five bifluid test loops and one liquid metal test loop were used for performance and endurance testing of these components at simulated reactor operating conditions. The molten salt used was a sodium-zirconium-uranium fluoride mixture of composition NaF—50 mole %, ZrF4—46 mole %, UF4—4 mole %. The NaK used was 56 wt % sodium and 44 wt % potassium. A total of 47,000 hr of operation at 1200–1700°F was accumulated on 18 heat exchangers and 20 radiators. The program demonstrated that the compact heat exchanger geometries tested possessed the performance capabilities and mechanical integrity to meet ART design requirements.