ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
G. G. Bentle
Nuclear Science and Engineering | Volume 7 | Number 6 | June 1960 | Pages 487-495
Technical Paper | doi.org/10.13182/NSE60-A25755
Articles are hosted by Taylor and Francis Online.
A transparent plastic in which gas was formed by gamma irradiation, was used to investigate the mechanisms of gas bubble formation and growth. Bubble formation and swelling were studied for several environments, both external and internal to the plastic-gas systems. During irradiation at 100°C, larger, but fewer bubbles form in the plastic than on lower temperature irradiation followed by 100°C annealing. The data indicate that inclusions increase bubble formation and internal surfaces promote bubble growth. An interpretation of these results, when applied to nuclear fuel swelling, indicates that swelling may be decreased by increasing fission rate and by decreasing the available sites for bubble nucleation and growth.