ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Milton Ash, Richard Bellman, Robert Kalaba
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 152-156
Technical Paper | doi.org/10.13182/NSE59-A25646
Articles are hosted by Taylor and Francis Online.
After a high-flux thermal nuclear reactor is shut down, the concentration of fission product xenon may rise for many hours as a result of the decay of fission product iodine into Xe135. This results in reactor poisoning and may, with consequent loss of efficiency, postpone the time at which the reactor may be restarted. This poisoning may be minimized by carefully controlling the rate at which the neutron flux is decreased during the shut-down operation. The determination of optimal control in this situation leads to some nonclassical problems in the calculus of variations. The aim of this paper is to show how they can be treated by the functional equation technique of dynamic programming. The methods we present rely upon the use of high-speed digital computers with large memories. The method automatically produces a valuable parameter study and results in stable designs.