ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
Milton Ash, Richard Bellman, Robert Kalaba
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 152-156
Technical Paper | doi.org/10.13182/NSE59-A25646
Articles are hosted by Taylor and Francis Online.
After a high-flux thermal nuclear reactor is shut down, the concentration of fission product xenon may rise for many hours as a result of the decay of fission product iodine into Xe135. This results in reactor poisoning and may, with consequent loss of efficiency, postpone the time at which the reactor may be restarted. This poisoning may be minimized by carefully controlling the rate at which the neutron flux is decreased during the shut-down operation. The determination of optimal control in this situation leads to some nonclassical problems in the calculus of variations. The aim of this paper is to show how they can be treated by the functional equation technique of dynamic programming. The methods we present rely upon the use of high-speed digital computers with large memories. The method automatically produces a valuable parameter study and results in stable designs.