ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
P. Greebler, W. Harker, J. Harriman
Nuclear Science and Engineering | Volume 6 | Number 2 | August 1959 | Pages 128-134
Technical Paper | doi.org/10.13182/NSE59-A25642
Articles are hosted by Taylor and Francis Online.
In a low-enrichment reactor at sufficiently high temperature that the Pu239 absorption cross section departs appreciably from 1/υ, plutonium build-up increases the sensitivity of the calculated thermal cross sections to the thermalization techniques used. Thermal neutron spectra are compared for two thermalization models in a heterogeneous lattice of a low-enrichment water-moderated reactor. Using blackness theory, equivalent homogeneous, monoenergetic cross sections for the lattice are computed at closely spaced energy intervals over the thermal energy range. The energy distribution of the thermal neutron flux is then obtained using both the Wigner-Wilkins and the Wilkins thermalization equations. Calculations are made with the fuel elements assumed to contain only U235 and U238 yielding almost pure 1/υ absorption, and also for the case of appreciable Pu239 present in addition to the uranium resulting in a significant departure from 1/υ absorption. Sensitivity of the calculated spectrum to the effective mass of the hydrogen is tested by allowing wide variations of the ξσs values for water at low energies in several applications of the Wilkins equation. Variations in the thermal neutron spectra, resulting from the choice of the thermalization equation (Wigner-Wilkins or Wilkins), from changing ξσs, or as a result of plutonium build-up, are evaluated in terms of isotopic cross sections averaged over the spectrum in each case.