ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
R. J. Mcwhorter, John Russell, Bertram Wolfe
Nuclear Science and Engineering | Volume 5 | Number 6 | June 1959 | Pages 382-389
Technical Paper | doi.org/10.13182/NSE59-A25614
Articles are hosted by Taylor and Francis Online.
The use of thermally black control sheets in a reactor is examined for three special cases: a finite slab reactor with a control sheet at its midplane, an infinite slab reactor containing an array of uniformly spaced control sheets, and a finite slab reactor with two control sheets placed symmetrically about the reactor centerline. The critical equation is obtained in each case and the physical significance of the solutions is examined by allowing the critical parameters to take limiting values. The conclusions reached are: (1) For τ/L2 « 1, thermally black control sheets are effectively black to all neutrons and divide the reactor into independent parts provided the distance W between control sheets, or core boundary and control sheet, is » τ3/2/L2. For W ≾τ3/2/L2, the control sheet is less effective. (2) For τ/L2 » 1 and W » τ/L, thermally black control sheets effectively divide the reactor into independent parts. For W ≾τ/L, the control sheets are less effective. (3) For τ/L2 » 1, W/L » 1, and W2/τ ∼ 1, a thermally black control sheet is relatively ineffective as compared with a sheet black to all neutrons. (4) The criteria for placing a given number of sheets most effectively in a reactor depend upon the worth of the sheets as determined from the conditions above. Thus, for sheets which are essentially black to all neutrons, the position of maximum effectiveness occurs when the reactor is cut into pieces of nearly equal size. However, for sheets of less worth, the positions of maximum effectiveness occur closer to the center of the reactor. In the limiting case, where the control effectiveness is very much smaller than the leakage from the reactor, the sheets should be placed about the reactor center, separated by about one diffusion length. It is pointed out that a very weak thermally black control element in a very large reactor may produce a large effect on the power distribution.