ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
John J. Volpe, George G. Smith, Daniel Klein, F. S. Frantz, Jocelyn C. Andrews
Nuclear Science and Engineering | Volume 5 | Number 6 | June 1959 | Pages 360-370
Technical Paper | doi.org/10.13182/NSE59-A25611
Articles are hosted by Taylor and Francis Online.
An experimental and analytical study of the flux distribution of two-region core configurations has been made for the TRX facility. The purpose of this study was to obtain an estimate of the sizes of critical configurations that would yield the same values of the basic reactor parameters in the inner region as a critical core consisting entirely of the inner region material and geometry. Several two-region cores have been constructed and experimental measurements of thermal utilization, resonance escape probability, and fast fission effects have been performed. Slow and fast neutron activation distributions have also been obtained. Two inner regions were constructed utilizing 1.3 w/o enriched UO2 fuel 0.384 in. in diameter and with a density of 10.53 gm/cm3. A third inner region utilized 1.3 w/o enriched uranium metal fuel with a diameter of 0.387 in. Light water served as the moderator and reflector in all cases. The experimental and theoretical results indicate that by utilizing two-region cores, measurements of microscopic parameters can be made for a wide variety of fuel sizes, fuel enrichments, and water-to-uranium volume ratios without the construction of full critical cores for each combination.