ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Louis J. Barbieri, J. Wallace Webster, Ken Tang Chow
Nuclear Science and Engineering | Volume 5 | Number 2 | February 1959 | Pages 105-119
Technical Paper | doi.org/10.13182/NSE59-A25563
Articles are hosted by Taylor and Francis Online.
The economics and physics of plutonium recycle in the Calder Hall type reactor are considered. Three possible schemes of recycle are studied. In scheme A the plutonium produced in a run is blended with fresh natural uranium for a subsequent run; in scheme B the plutonium is alloyed with some diluent metal and fabricated into high heat-transfer elements more like MTR- or PWR-seed type elements and a subsequent load of fresh natural uranium elements is “spiked” with these plutonium elements; and in scheme C half the spent uranium is recycled as well as the plutonium. The conclusions are that scheme A will be the most economic means of recycle and will compete very favorably with the mode of operation where the plutonium is sold at the end of each run for $12 per gm. Viewed in another way, with natural uranium having its current value and lease charge, the fuel value of plutonium for recycling, with all costs considered, will be greater than $12 per gm. Schemes B and C do not look as attractive as A for the Calder Hall type reactor. The results are predicated on the assumption that the fuel elements will withstand exposure levels as high as 8800 Mwd/ton. This is beyond present experience, but it is believed that it is not unrealistic to assume that such exposures will be achieved in the future with improved fuel elements. A matrix-analytic solution to the differential equations governing isotopic concentrations as functions of flux-time is also developed.