ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a bumping start in Atlanta, Ga., Tuesday morning with an opening plenary that felt like part dance party and part highlight reel showing off the latest industry achievements.
That intro left the audience pumped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Jack Chernick, Russel Vernon
Nuclear Science and Engineering | Volume 4 | Number 5 | November 1958 | Pages 649-672
Technical Paper | doi.org/10.13182/NSE58-A25554
Articles are hosted by Taylor and Francis Online.
Two basic formulas for resonance absorption applicable both to mixtures and to lumps are considered, the narrow resonance (NR) approximation and the infinite mass (NRIA) approximation. The formulas are shown to be complementary, yielding accurate results when the choice between them is based on the practical width of the resonance line as originally suggested by Wigner. The formulas are used to calculate resonance integrals for U238 and Th232. The results yield a low mass absorption term and a surface absorption term proportional to the square root of the surface-to-mass ratio for lumps of practical size in qualitative agreement with the experimental work of Egiazarov and Hellstrand for U238 and with Dayton and Pettus for thorium. Dresner’s suggestion that the ratio of the resonance integral to the mass absorption term is independent of the resonance structure is not borne out. Refinement of the basic formulas is discussed. The correction of the NRIA formula for energy degradation is in agreement with Spinney’s calculations for U-H mixtures and with Monte Carlo results obtained by Auerbach for uranium-water lattices. Consideration of lumping effects indicates that the basic formulas generally underestimate the resonance absorption. It is therefore recommended that the common use of ill-defined flux disadvantage factors be dropped.