ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
W. E. Ray, C. J. Beck
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 481-494
Symposium on Reactor Control Materials | doi.org/10.13182/NSE58-A25544
Articles are hosted by Taylor and Francis Online.
A round die hot coextrusion technique used to prepare rods having complex cross sections has been developed and successfully applied to the fabrication of powder metallurgy parts with and without external cladding. The procedure involves assembling and extruding steel billets of round cross section which contain an axially located assembly of powder metallurgy and sheet metal parts which is an enlarged and shortened mockup of the desired part. After extrusion, the steel parts are removed and a fully dense rod having the desired shape and composition remains. Rods having several compositions in metal lurgically joined zones along their lengths can be produced by this method. For example, a Y-shaped rod with a Ti-25 volume per cent Eu2O3 dispersion at one end, a Ti-10.7 volume per cent B10 dispersion midsection, and a pure Ti length at the other end was successfully produced. It showed dimensional uniformity in keeping with usual tolerances for reactor control components and was clad with a fully bonded, 0.005-inch thick layer of titanium. Data on the physical properties, corrosion performance, thermal cycling resistance, and irradiation damage resistance of parts produced by this technique are presented. These data indicate that the method can be successfully used to produce reactor components which are very difficult to manufacture by other techniques.