ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. Avery
Nuclear Science and Engineering | Volume 3 | Number 5 | May 1958 | Pages 504-513
Technical Paper | doi.org/10.13182/NSE58-A25488
Articles are hosted by Taylor and Francis Online.
The conditions for criticality and resulting flux distribution are obtained in the two-group diffusion theory approximation for a ring of N equally spaced identical cylindrical rods embedded symmetrically in a radially bare cylinder. The system is uniform axially and of either finite or infinite height. Either or both of the two media of the system may be multiplying. The method used is a generalization of the Nordheim-Scalettar method for the solution of the control rod problem of similar geometry. In satisfying each of the various boundary conditions, use is made of the Bessel function addition theorems to center all terms in the general solution at the appropriate line of symmetry. The results are obtained in terms of a Fourier expansion of the angular dependence of the flux about each rod, which in application must be cut off after some early term in the infinite series. The order of the critical determinant is equal to twice the number of angular terms retained.