ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Myron B. Reynolds
Nuclear Science and Engineering | Volume 3 | Number 4 | April 1958 | Pages 428-434
Technical Paper | doi.org/10.13182/NSE58-A25479
Articles are hosted by Taylor and Francis Online.
Data on the diffusion of fission krypton from irradiated 20 weight per cent uranium-aluminum alloy are presented. At temperatures below 640°C (the eutectic) there was no measurable loss of radiokrypton from this alloy during annealing periods of up to three weeks. At temperatures above the eutectic gas evolution occurred with a time dependence in rough agreement with the theoretical prediction for diffusion from spherical particles. The nature of the diffusion process for rare gases in metallic systems is discussed with particular reference to the limitations imposed on diffusion rate by solubility and available concentration gradient. The basic difference between the behavior of fission gases in dispersion-type nuclear fuels and in homogeneous solid-type fuels is outlined. The data on the uranium-aluminum alloy system are interpreted in light of this discussion.