ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
D. Meneghetti, H. H. Hummel, W. B. Loewenstein
Nuclear Science and Engineering | Volume 3 | Number 2 | February 1958 | Pages 151-160
Technical Paper | doi.org/10.13182/NSE58-A25457
Articles are hosted by Taylor and Francis Online.
The degradation of neutron energies in a fast reactor is largely due to inelastic scattering. In a dilute fast system (large U238 to U235 atomic ratio) the neutron spectrum is then primarily determined by a fission spectrum distribution modified by inelastic scattering in U238. In this investigation a set of ten-group fast cross sections for U238 have been prepared with the inelastic cross cross sections below about 1.35 Mev based upon levels at 45, 150, and 700 kev. The inelastic transfer contributions from unknown higher levels were chosen to be consistent with the gross measurements of Bethe, Beyster, and Carter, having the three-group energy division consisting of above 1.4 Mev. between 0.4 and 1.4 Mev, and below 0.4 Mev. The ten-group fast cross sections were tested by comparing the calculated equilibrium spectrum, diffusion length, and detector responses in natural uranium with reported experimental values found in the blanket of the Zephyr reactor and in the Snell experiments.