ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
D. Meneghetti, H. H. Hummel, W. B. Loewenstein
Nuclear Science and Engineering | Volume 3 | Number 2 | February 1958 | Pages 151-160
Technical Paper | doi.org/10.13182/NSE58-A25457
Articles are hosted by Taylor and Francis Online.
The degradation of neutron energies in a fast reactor is largely due to inelastic scattering. In a dilute fast system (large U238 to U235 atomic ratio) the neutron spectrum is then primarily determined by a fission spectrum distribution modified by inelastic scattering in U238. In this investigation a set of ten-group fast cross sections for U238 have been prepared with the inelastic cross cross sections below about 1.35 Mev based upon levels at 45, 150, and 700 kev. The inelastic transfer contributions from unknown higher levels were chosen to be consistent with the gross measurements of Bethe, Beyster, and Carter, having the three-group energy division consisting of above 1.4 Mev. between 0.4 and 1.4 Mev, and below 0.4 Mev. The ten-group fast cross sections were tested by comparing the calculated equilibrium spectrum, diffusion length, and detector responses in natural uranium with reported experimental values found in the blanket of the Zephyr reactor and in the Snell experiments.