ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
Robert Avery
Nuclear Science and Engineering | Volume 3 | Number 2 | February 1958 | Pages 129-144
Technical Paper | doi.org/10.13182/NSE58-A25455
Articles are hosted by Taylor and Francis Online.
Coupling a fast and thermal assembly in a power breeder reactor affords the possibility of obtaining the relatively long neutron lifetime characteristic of a thermal assembly and the high breeding ratio characteristic of a fast assembly. General properties of such mixed systems are discussed. A suggested design is discussed and compared with a prototype all-fast system. The coupled system considered consists of a 400-liter Pu239 fueled, Na-cooled, fast core surrounded by a 10-cm inner blanket annulus containing natural U, Na coolant, and structural material, but no moderator. Outside the inner blanket is a 30-cm annulus of Be surrounded by an outer blanket consisting primarily of depleted U. The inner blanket serves as core for the thermal system, as barrier for low-energy neutrons between moderator and fast core, and as reflector for the fast core. Its construction is essentially the same as the first part of the blanket in a fast power breeder, so that the transition from an allfast system to the coupled system involves only the replacement of blanket material by moderator and the use of natural rather than depleted uranium in the inner blanket. The properties of the system described are thereby changed: neutron lifetime increases from ∼1.5 × 10-7 sec. to ∼2×10-5 sec; breeding ratio reduced ∼10%; fast core critical mass decreased ∼10%; multiplication constant of the system without the contribution of thermal fissions ∼0.95; thermal fissions generate ∼13% of total power; and the radial power distribution in fast core flattened, maximum to average ratio reduced from ∼1.5 to ∼1.3.