ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. J. Ohanian, P. B. Daitch
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 343-352
Technical Paper | doi.org/10.13182/NSE64-A20967
Articles are hosted by Taylor and Francis Online.
Numerical solutions of the time-dependent thermalization problem in infinite 1/ν poisoned media as well as in finite media in the diffusion approximation have been obtained using an eigenfunction expansion of the neutron-density function in a discrete-energy representation. This eigenfunction method is compared with a method based on direct integration of the Boltzmann equation using a discrete-energy mesh for the scattering integral and a first-order Taylor series for the time integration. Both methods of calculation have given the same results where compared in the area of time-dependent and steady-state spectra. The Wigner-Wilkins Mass-1 and Nelkin scattering models have been used with particular emphasis on the computation of time-dependent, asymptotic, steady-state spectra and diffusion parameters and the determination of their sensitivity to the scattering kernel. It is found that time-dependent spectra are rather sensitive to the scattering kernel, particularly at times of the order of a few microseconds after the introduction of a neutron pulse in the case of hydrogenous moderators. The eigenvalues and eigenfunctions for both realistic scattering kernels show the characteristics predicted for simpler analytic models. Both discrete and continuum eigenvalues have been found with the eigenfunctions corresponding to the continuum eigenvalues exhibiting a characteristic singular behavior. An interpolation scheme to determine steady-state spectra in hydrogenous moderators is also presented. The method, which is based on interpolating in the reciprocal of the infinite-medium neutron lifetime, gives very good agreement with directly computed spectra in the range of 200 to 15 microseconds lifetime. A perturbation method based upon the infinite-medium eigenfunctions is used to compute diffusion parameters for the decay constant in water; this method, through terms in B4, yields the decay constant to better than 1% in comparison with the exact diffusion theory result for B2 = 1.0 cm-2.