ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
M. J. Ohanian, P. B. Daitch
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 343-352
Technical Paper | doi.org/10.13182/NSE64-A20967
Articles are hosted by Taylor and Francis Online.
Numerical solutions of the time-dependent thermalization problem in infinite 1/ν poisoned media as well as in finite media in the diffusion approximation have been obtained using an eigenfunction expansion of the neutron-density function in a discrete-energy representation. This eigenfunction method is compared with a method based on direct integration of the Boltzmann equation using a discrete-energy mesh for the scattering integral and a first-order Taylor series for the time integration. Both methods of calculation have given the same results where compared in the area of time-dependent and steady-state spectra. The Wigner-Wilkins Mass-1 and Nelkin scattering models have been used with particular emphasis on the computation of time-dependent, asymptotic, steady-state spectra and diffusion parameters and the determination of their sensitivity to the scattering kernel. It is found that time-dependent spectra are rather sensitive to the scattering kernel, particularly at times of the order of a few microseconds after the introduction of a neutron pulse in the case of hydrogenous moderators. The eigenvalues and eigenfunctions for both realistic scattering kernels show the characteristics predicted for simpler analytic models. Both discrete and continuum eigenvalues have been found with the eigenfunctions corresponding to the continuum eigenvalues exhibiting a characteristic singular behavior. An interpolation scheme to determine steady-state spectra in hydrogenous moderators is also presented. The method, which is based on interpolating in the reciprocal of the infinite-medium neutron lifetime, gives very good agreement with directly computed spectra in the range of 200 to 15 microseconds lifetime. A perturbation method based upon the infinite-medium eigenfunctions is used to compute diffusion parameters for the decay constant in water; this method, through terms in B4, yields the decay constant to better than 1% in comparison with the exact diffusion theory result for B2 = 1.0 cm-2.