ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. L. French and M. B. Wells
Nuclear Science and Engineering | Volume 19 | Number 4 | August 1964 | Pages 441-448
Technical Paper | doi.org/10.13182/NSE64-A19002
Articles are hosted by Taylor and Francis Online.
An albedo model for calculating the dose due to fast neutrons reflected from materials of low to moderate hydrogen content has been developed through analysis of extensive Monte Carlo data. The model, which was developed from reflection data for iron, concrete and three types of soil, is for reflection to a unit non-directional receiver and is of the form α(Ε0)cos2-3θ0cosθ where α(Ε0) is a coefficient tabulated as a function of incident energy, Ε0, for the various materials, θ0 is the angle of incidence and θ is the angle of reflection (both measured from the normal). The differential albedo, in units of reflected dose/steradian per unit dose incident at angle θ0, may be converted to a total albedo by multiplying by π. The total dose albedo for normally incident fission neutron was found to be closely approximated by 0.435(ΣΤΣΗ)/ΣΤ where ΣΤ is the macroscopic total cross section of all elements of the material, and ΣΗ is the macroscopic cross section of the hydrogen of the material, both weighted by the fission spectrum.