ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W.E. Browning, Jr., C.E. Miller, Jr., R.P. Shields,B.F. Roberts
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 151-162
Technical Paper | doi.org/10.13182/NSE64-1
Articles are hosted by Taylor and Francis Online.
A series of experiments to study the amounts and forms of fission products released during simulated reactor accidents is described. These experiments consisted of melting miniature stainless-steel-clad UO2 fuel elements in a helium atmosphere in the Oak Ridge Research Reactor and measuring the fission products released. Fission and gamma heat in the reactor raised the temperature of the miniature fuel element sufficiently high to melt the UO2 without the use of external heat. In these experiments with UO2, nearly all of the iodine, tellurium, and cesium, and more than half of the strontium, zirconium, ruthenium, barium, and cerium were released from the fuel. Release of the latter group of fission products and uranium from a zone including the fuel and surrounding heat insulators was generally less than 3%. The minimum temperature of this zone during fuel melting was 1000 C. The retention of fission products within the high-temperature zone is considered to be significant since, during an actual reactor accident, temperatures corresponding to those of the high-temperature zone would probably occur only within the immediate area in which the fuel is overheated. Analysis of the observed distributions of deposited fission products yields information about their behavior and form. Ruthenium follows the stainless-steel cladding as it melts and vaporizes. Certain fission products are associated with millimicrometer-size particles of two size groups, one centered around 22 angstroms and the second around 30 angstroms in diameter. Comparisons of the fission-product-release values from in-pile and various out-of-pile experiments indicate that the in-pile releases are greater, probably because of more extreme temperatures.