ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. G. Hart, M. Lounsbury, R. W. Jones, M. J. F. Notley
Nuclear Science and Engineering | Volume 18 | Number 1 | January 1964 | Pages 6-17
Technical Paper | doi.org/10.13182/NSE64-A18137
Articles are hosted by Taylor and Francis Online.
A study of five methods of determining burnup in fuel test specimens has been made to determine the confidence which can be placed in the burnup numbers so obtained. The five methods compared are (1) uranium-235 depletion, (2) cobalt monitoring, (3) cesium-137 production, (4) plutonium production, and (5) calorimetry. The study includes a comparison of data obtained on portions of the specimen with that obtained on the complete specimen. It has been found that all of the methods give burnup values that are within ± 5% of the “best” burnup value, the “best” value being defined as the unweighted average of all the available results on a particular sample. The limitations and pitfalls of all the methods are discussed in some detail. It has further been found that a complete cross-section of the test specimen, approximately ½in. long, is sufficient sample to give representative burnup data. The integration from this to the complete specimen is relatively straightforward. Any sample not comprising a complete cross-section involves radial as well as longitudinal integration, giving results that are relatively uncertain, particularly in samples of high heat rating where migration of some species is a distinct possibility.