ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
C. D. Watson, G. A. West, W. F. Schaffer, JR.
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 149-164
Technical Paper | doi.org/10.13182/NSE63-A17220
Articles are hosted by Taylor and Francis Online.
Experimental mechanical equipment for removing the stainless steel jackets from the liquid-metal-bonded fuels of the Sodium Reactor Experiment (SRE), Fermi, and Hallam reactors was evaluated on a pilot scale. A hydraulic dejacketing method and two alternative methods were tested with spent, NaK-bonded stainless-steel-jacketed fuel from Core 1 of the SRE. This four-year-old fuel, consisting of 2.7% enriched uranium slugs, was exposed to an average irradiation of 675 Mw-day/tonne during a period of two years. It was discharged from the reactor after abnormal temperatures had damaged 30% of the core. About 1.8 metric tonnes of spent Core 1 fuel were dejacketed mechanically at rates up to 9.2 kg of uranium per hour. A production rate 2 to 3 times higher had been predicted from the processing of unirradiated fuel. The hydraulic method, by which it was planned that all fuel would be processed (by expansion of the jackets and expulsion of the slugs) worked with only 16.5% of the fuel. The remainder of the fuel had to be processed by one of the two alternative methods. Dislodgment of fuel slugs from the jackets was extremely difficult because the jacket and some slugs were stuck together by a eutectic alloy of stainless steel-uranium. Also, the irradiated jackets had lost their ductility from the midpoint of a fuel rod to the top and, in addition, showed evidence of carburization, work hardening, sensitization, and embrittlement. Dejacketing of the abnormal SRE Core 1 fuel was accomplished successfully but none of the three dejacketing methods evaluated appeared to be sufficiently versatile to accommodate abnormal fuel and thus cannot be guaranteed as reliable production methods for the liquid-metal-bonded fuels.