ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nader M. A. Mohamed
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 172-181
Technical Paper | doi.org/10.13182/NSE11-77
Articles are hosted by Taylor and Francis Online.
Zirconium is studied in this paper as a reflector for light water reactors. An exploratory analysis of using zirconium as a reflector for two simple reactor core models was carried out. The study showed that use of zirconium as a reflector has a valuable impact on the core reactivity. The study also showed that zirconium-water reflector is more effective than water reflector or stainless steel-water reflector. A typical Westinghouse 1150-MW(electric) pressurized water reactor was simulated using the Monte Carlo code MCNP5 as a case study. The simulation was carried out at the beginning of the core cycle of three batch cores with 235U enrichments of 2.25, 2.8, and 3.3 wt%. The simulation showed that use of Zircaloy-4 reflector between the fuel assemblies and the core barrel adds a positive reactivity Δkeff of 0.00686, while use of stainless steel reflector adds a positive reactivity Δkeff of 0.0037.Use of Zircaloy-4 reflector increases the relative power density in the peripheral assemblies by ˜38%. The power peaking factor is shifted from the center toward the periphery, and the assembly power peaking factor is reduced by ˜13%. The use of Zircaloy-4 reflector with this increase of the reactivity of the peripheral assemblies increases the fast neutron current (E > 0.5 MeV) that reaches the reactor pressure vessel (RPV) by 70%, while the use of stainless steel reflector reduces it by 44%.Adjusting the 235U enrichment in the peripheral assemblies batch to compensate for the excess reactivity caused by using Zircaloy-4 reflector reduces the 235U enrichment by 8.5% in this batch. This means a reduction of 3.35% of the core 235U average enrichment can be achieved by the use of Zircaloy-4 reflector. This reduction in the 235U enrichment reduces the increase of the fast neutron current that reaches the RPV to 23%. In this case, increasing the water gap between the core barrel and the RPV by 3 cm reduces the fast neutron current that reaches the RPV to 95% of that of the basic case. The use of Zircaloy-4 reflector has a good effect on flattening the fission density distribution in the peripheral assemblies batch both before and after reducing 235U enrichment.