ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
J. R. Beyster, J. L. Wood, W. M. Lopez, R. B. Walton
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 168-184
doi.org/10.13182/NSE61-A15602
Articles are hosted by Taylor and Francis Online.
An experimental arrangement designed for accurate measurements of low-energy neutron spectra has been assembled and tested. A pulsed high-current electron linear accelerator is used to produce short bursts of fast neutrons which are introduced into a moderating and absorbing assembly. The steady-state energy spectrum of neutrons in the assembly is determined by pulsed-beam time-of-flight techniques. Hydrogen-moderated systems poisoned with a number of common neutron absorbers (boron, cadmium, samarium) have been studied, and the resulting spectra compared with theoretical predictions using both free and bound hydrogen scattering kernels. In general, a marked difference exists between measured spectra and spectra calculated using a free hydrogen kernel. In the case of water where a detailed scattering kernel is available for room temperature, theory and experiment are in reasonable agreement.