ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a bumping start in Atlanta, Ga., Tuesday morning with an opening plenary that felt like part dance party and part highlight reel showing off the latest industry achievements.
That intro left the audience pumped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
J. Chernick, S. Oleksa Moore
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 537-544
doi.org/10.13182/NSE59-A15516
Articles are hosted by Taylor and Francis Online.
The breeding potential of thermal reactors is re-evaluated on the basis of present nuclear data. It is concluded that positive breeding on the U233, thorium cycle is possible with a variety of moderators including heavy water, graphite, beryllium, and ordinary water. Current measurements indicate that the accepted thermal value of η23 = 2.28 ± 0.02 is somewhat conservative. Neutron spectrum considerations show that η23 decreases gradually with increasing resonance absorption to a minimum of 2.14 ± 0.04. When neutron losses to the moderator are considered, maximum breeding gains of 0.26, 0.22, 0.21, and 0.19, respectively, are obtained for D2O, graphite, Be, and H2O moderated reactors. The breeding gain in reactors partially or completely moderated by beryllium can be considerably increased if use is made of the fast effect, presently estimated at 1.075 ± 0.02 for pure beryllium. Probable breeding gains in proposed full-scale fluid fuel breeders are estimated at 0.09 for the Aqueous Homogenous Reactor and 0.05 for the graphite moderated Liquid Metal Fuel Reactor and Molten Salt Reactor. Breeding in predominantly thermal, solid fuel reactors also appears within reach if neutron losses are minimized. The possibility of positive breeding in near thermal, plutonium fuelled reactors is unsettled although this goal can be approached by maximum use of the fast effect in U238. Estimates of breeding ratios in plutonium fuelled reactors depends on the variation of η49 with neutron temperature which is still inadequately known.