ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Chernick, S. Oleksa Moore
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 537-544
doi.org/10.13182/NSE59-A15516
Articles are hosted by Taylor and Francis Online.
The breeding potential of thermal reactors is re-evaluated on the basis of present nuclear data. It is concluded that positive breeding on the U233, thorium cycle is possible with a variety of moderators including heavy water, graphite, beryllium, and ordinary water. Current measurements indicate that the accepted thermal value of η23 = 2.28 ± 0.02 is somewhat conservative. Neutron spectrum considerations show that η23 decreases gradually with increasing resonance absorption to a minimum of 2.14 ± 0.04. When neutron losses to the moderator are considered, maximum breeding gains of 0.26, 0.22, 0.21, and 0.19, respectively, are obtained for D2O, graphite, Be, and H2O moderated reactors. The breeding gain in reactors partially or completely moderated by beryllium can be considerably increased if use is made of the fast effect, presently estimated at 1.075 ± 0.02 for pure beryllium. Probable breeding gains in proposed full-scale fluid fuel breeders are estimated at 0.09 for the Aqueous Homogenous Reactor and 0.05 for the graphite moderated Liquid Metal Fuel Reactor and Molten Salt Reactor. Breeding in predominantly thermal, solid fuel reactors also appears within reach if neutron losses are minimized. The possibility of positive breeding in near thermal, plutonium fuelled reactors is unsettled although this goal can be approached by maximum use of the fast effect in U238. Estimates of breeding ratios in plutonium fuelled reactors depends on the variation of η49 with neutron temperature which is still inadequately known.