ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
R. H. Rainey, J. G. Moore
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 367-371
doi.org/10.13182/NSE61-A15380
Articles are hosted by Taylor and Francis Online.
The Acid Thorex process has been developed on a laboratory scale for recovery of uranium and thorium from spent fuel solutions. The thorium and uranium are extracted by tributyl phosphate (TBP) with only the thorium nitrate and nitric acid as “salting agents.” As compared to the present Thorex process in which aluminum nitrate is employed as a salting agent, a considerably greater reduction in aqueous waste volumes is possible. With a synthetic solution of Consolidated Edison Thorium Reactor fuel as feed, uranium and thorium were decontaminated from ruthenium, zirconium-niobium, protactinium, and rare earth elements by factors of 2,000, 30,000, 1,000, and 105, respectively. The concentrated aqueous waste volume was 0.2 liter per kilogram of thorium processed. These values compare favorably with corresponding decontamination factor values for the aluminum-salted Thorex system of 600, 3,000, 3,000, and 2 × 105 and volume of 2 liters per kilogram of thorium processed.