ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
S. R. Hatcher, H. K. Rae
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 316-330
doi.org/10.13182/NSE61-A15373
Articles are hosted by Taylor and Francis Online.
The formation of a colloidal suspension of hydrated aluminum oxide, Gibbsite or α-Al2O3 · 3D2O, in the heavy water of the NRU reactor is described, and compared with turbidity formation in other aluminum-water reactor systems. The observed corrosion rate of aluminum in NRU is consistent with a mass transfer mechanism involving the continuous dissolution of the corrosion product film. Two primary mechanisms for removing the dissolved aluminum from solution are postulated. These are direct crystallization onto deposits in the heat exchangers and direct crystallization onto Gibbsite particles in the water. The former effectively removes alumina from the system while the latter produces turbidity in the water. The rate of appearance of turbidity depends on its rate of formation and its rate of removal by the purification system. Turbidity is removed by filtration and adsorption in the ion-exchange columns and by evaporation. It is desirable to reduce the rate of formation of turbidity by choosing water conditions which minimize the solubility of the corrosion product film, rather than controlling the turbidity level by an adequate purification capacity.