ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
R. Wayne Houston
Nuclear Science and Engineering | Volume 4 | Number 2 | August 1958 | Pages 227-238
doi.org/10.13182/NSE58-A15364
Articles are hosted by Taylor and Francis Online.
For samples exposed in high neutron flux regions of reactors the contribution to the total dosage due to the recoils from elastically scattered fast neutrons may be significant. The calculation of this contribution is considered here. Three methods are presented, each differing in the manner in which the details of the energy distribution of fast neutrons are treated. In the first, the neutron flux per unit energy interval is assumed to be of the asymptotic or 1/E form up to fission energies. In the second and third, a separate computation is made for the uncollided neutrons reaching the sample. The remaining contribution due to once-scattered neutrons is treated as in the first method, but alternate forms for the source spectrum of once-scattered neutrons are considered. Use of the equations requires only a knowledge of the thermal neutron flux in the vicinity of the sample. Assumptions and limitations are discussed. Numerical results are presented for comparison of the effects in light water, heavy water, and graphite moderated reactors in the irradiation of a hydrocarbon (cyclohexane) sample.