ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
S. B. Degweker, Y. S. Rana
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 296-313
Technical Paper | doi.org/10.13182/NSE10-54
Articles are hosted by Taylor and Francis Online.
Reactor noise in accelerator-driven systems (ADSs) is different from that in critical or radioactive source-driven subcritical systems because of the periodically pulsed source and its non-Poisson character. In two earlier papers, we developed a theory of ADS reactor noise, incorporating these features. The non-Poisson character of the source does not permit the use of the forward Kolmogorov equation or the Bartlette formula, two commonly used techniques in traditional noise theory. The method used in these papers was a probability-generating function combined with the linear character of the reactor noise in zero-power systems. In this paper we develop the Langevin approach to reactor noise in ADSs. Apart from being simpler, the Langevin approach allows treatment of feedback effects arising in ADSs with significant power as well as other noise sources, if any. We demonstrate that it is possible to obtain the correct expressions for various noise descriptors using this approach. The method is then applied to treat correlated non-Poisson pulsed sources with a finite pulse width including delayed neutrons. The present paper complements and expands our earlier discussions of ADS reactor noise.