ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
L. Heilbronn, C. J. Zeitlin, Y. Iwata, T. Murakami, T. Nakamura, S. Yonai, R. M. Ronningen, H. Iwase
Nuclear Science and Engineering | Volume 169 | Number 3 | November 2011 | Pages 279-289
Technical Paper | doi.org/10.13182/NSE10-112
Articles are hosted by Taylor and Francis Online.
Double-differential neutron yields from 400 MeV/nucleon 56Fe stopping in C, Al, Cu, and Pb targets are reported, along with Particle and Heavy Ion Transport Code System (PHITS) transport model calculations of the data. The yields were measured at 90, 120, and 160 deg in all four systems. Neutron energies were measured from 1 to 2 MeV up to a few hundred mega-electron-volts. The data augment previous measurements made by Kurosawa et al. that were reported for angles between 0 and 90 deg. The measurements for each target were made at two different target orientations, resulting in two different thicknesses of target that neutrons had to traverse before reaching the neutron detectors. The differences in the spectra between two different target orientations are due to neutron transport through the target and as such provide an interesting test of transport model calculations. The data indicate that PHITS reproduces the effects of neutron transport very well but may overestimate neutron production between energies of 10 to 50 MeV in some cases.