ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Tomasz Kozlowski, Yunlin Xu, Thomas J. Downar, Deokjung Lee
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE08-85
Articles are hosted by Taylor and Francis Online.
For practical reactor core applications, low-order transport approximations such as SP3 have been shown to provide sufficient accuracy for both static and transient calculations with considerably less computational expense than the discrete ordinate or the full spherical harmonics methods. These methods have been applied in several core simulators where homogenization was performed at the level of the pin cell. One of the principal problems has been to recover the error introduced by pin cell homogenization. One of the basic approaches to treat pin cell homogenization error is pin cell discontinuity factors (CDFs) based on well-established generalized equivalence theory to generate appropriate group constants. The method is able to treat all sources of error together, allowing even a few-group diffusion solution with one mesh per cell to reproduce a higher-order reference solution. However, a CDF has to be derived separately for each space-angle approximation. An additional difficulty is that in practice the CDFs have to be derived from a lattice calculation from which only the scalar flux and current are available, and therefore recovery of the exact SPN angular moment is not possible. This paper focuses on the pin cell scale homogenization. It demonstrates derivation of the CDF for the SP3 transport method with finite-difference spatial discretization with the limitation of only the scalar flux and interface current being available from the heterogeneous reference. The method is demonstrated using a sample benchmark application.