ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
D. Pacella, G. Pizzicaroli, D. Mazon, P. Malard
Fusion Science and Technology | Volume 57 | Number 2 | February 2010 | Pages 142-151
Technical Paper | doi.org/10.13182/FST10-A9368
Articles are hosted by Taylor and Francis Online.
In this paper we propose a soft-X-ray method to characterize dust accumulation or layer formation on a given substrate. The method determines the differential absorption based on the X-ray lines emitted from the substrate by fluorescence as a result of film or powders deposited on the substrate surface. We have chosen to use molybdenum as the material for the substrate because it is used in present-day tokamaks and it is being considered as material for the first mirror. It also offers the advantage of having two strong lines, well separated in energy: the L-shell emissions centered at [approximately]2.3 keV and the K lines at [approximately]17.4 keV. The transparency of the layer can be then measured at 2.3 keV, provided the K line is unaffected. The feasibility of the proposed method was clearly demonstrated in laboratory experiments, providing estimations of the thicknesses that can be detected, for a number of relevant elements for fusion devices (Be, C, Fe, and W).