ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Y. Herreras, S. Domingo, J. M. Perlado, A. Ibarra
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 741-745
Nuclear Analysis | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST09-A8997
Articles are hosted by Taylor and Francis Online.
Future fusion reactors will require remote handling systems due to their neutronic activation and subsequent gamma irradiation inside the chamber. The testing and validation of these systems will be carried out in facilities specifically designed for this purpose. The aim of this paper is to describe a methodology to optimize both a bremsstrahlung generated gamma dose and its spatial distribution inside a given testing volume. Electron main beam spectrum and intensity, angular distribution of the split beams and target material and its thickness are the main considered parameters. Dose distribution at any given point of the testing volume is then obtained in order to perform a statistical analysis which establishes a criterion to choose the most suitable parameter configuration for the different irradiation needs.