ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
M. J. Loughlin et al.
Fusion Science and Technology | Volume 56 | Number 2 | August 2009 | Pages 566-572
Fusion Technology Plenary | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2) | doi.org/10.13182/FST56-566
Articles are hosted by Taylor and Francis Online.
The principle needs of ITER with regard to nuclear analysis can be divided into the broad categories of safety and licensing, plant operation, and decommissioning although there is much overlap and interdependence within these categories.This paper reviews the status of the methods applied to date and recommends the future strategy which ITER should adopt to address the continuing requirements and responsibilities. This is done by consideration of the application of radiation transport codes, the creation of an ITER reference neutronics model, the application of a neutronics results database, and the management tools which will be required. Areas in which new codes and techniques need to be developed will be identified.