ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Brian J. Egle, Gerald L. Kulcinski
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 518-522
Experimental Facilities and Nonelectric Applications | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8955
Articles are hosted by Taylor and Francis Online.
Design, modeling and simulation work has been done to develop a system of producing radioisotopes by using D-3He fusion and the Inertial Electrostatic Confinement (IEC) fusion concept. This work provides a set of requirements for moving from the previous proof-of-concept experiments to medically relevant dosages of the radioisotopes used in Position Emission Tomography (PET). This study focuses primarily on the production of 11C from the 14N(p, ) 11C reaction, and could be extended to additional PET isotopes. A target was designed for gaseous parent materials; it consists of vacuum tight panels placed inside the vacuum vessel of an IEC device. The side facing the isotropic source of 14.7 MeV fusion protons is a thin metal foil (~0.5 mm of Ti). The foil acts to separate the vacuum environment of the IEC device from the pressured gaseous environment of the target. Parametric analysis of the foil thickness and 14N gas pressure was performed to optimize the efficiency of fusion protons in producing 11C. The MCNPX 2.5.0 simulations predicted that an optimized system could produce 390 nCi of 11C with the present laboratory scale IEC device at the University of Wisconsin, which has a D-3He fusion rate of 2 x 107 protons per sec (p/s).