ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Chris Weber, Bradley Motl, Jason Oakley, Mark Anderson, Riccardo Bonazza
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 460-464
IFE Drivers and Chambers | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8945
Articles are hosted by Taylor and Francis Online.
The growth of an interfacial perturbation after acceleration by a shock wave, known as the Richtmyer-Meshkov instability (RMI), plays an important role in the compression of an ICF target. Experiments studying the RMI are performed in a vertical shock tube by observing the growth of the interface between a pair of gases after acceleration by a planar shock wave. A near 2D, sinusoidal, membraneless interface is created in a shock tube by oscillating rectangular pistons at the stagnation plane between the two gases. The interface is visualized by seeding one of the gases with acetone, smoke, or atomized oil and observing the fluorescence or Mie scattering from a planar laser sheet. The results presented here span a range of Atwood numbers, 0.30<A<0.95, and shock wave strengths, 1.1<M<3. Numerical simulations of the experimental conditions are performed and compared with the experiments using the 2D hydrodynamics code Raptor (LLNL).