ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Delivering new nuclear on time, the first time
Mark Rinehart
The nuclear industry is entering a period of renewed urgency, driven by the need for stable baseload power, heightened energy security concerns, and expanded defense infrastructure. Now more than ever, we must deliver new nuclear projects on time and on budget to maintain public trust and industry momentum.
The importance of execution certainty cannot be overstated—public trust, industry investment, and future deployment all hinge on our ability to deliver these projects successfully. However, history has shown that cost overruns and schedule delays have eroded confidence in the industry’s ability to deliver nuclear construction. As we embark on many first-of-a-kind (FOAK) reactor builds, fuel cycle infrastructure projects, and extensive defense-related nuclear projects, we must ensure that execution certainty is no longer an aspiration—it is an expectation.
Seungyon Cho et al.
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 216-220
Tritium, Safety, and Environment | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8905
Articles are hosted by Taylor and Francis Online.
Helium Cooled Solid Breeder (HCSB) blanket is one of two blanket concepts being considered as Korean Test Blanket Module (TBM) for ITER with the aim for testing and verifying the capability of the breeding blanket concepts. R&D activities being carrying out for HCSB TBM include the development of materials, fabrication technologies, and TBM associated system design. A small sample of ferritic/martensitic (FM) steel was fabricated. It was found that the tensile strength was close to previous value. A fabrication technique of sphere pebbles of lithium titanate breeder and graphite reflector was developed. A FM/FM TIG welding was performed and the results showed that tensile strength of the welded zone was decreased about 10 %. A small punch test method of mechanical property evaluation was introduced to verify the suitability of small specimen for irradiation test by examining the relationship of the conventional uniaxial tensile test, and the tensile strengths were compared. As TBM design has complicated square channel configuration, short square channel was fabricated successfully. Finally, the components and specifications of the TBM associated systems are described in this paper.