ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Fuyumi Ito, Naotake Nakamura, Keiji Nagai, Mitsuo Nakai, Takayoshi Norimatsu
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 465-471
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST09-A7428
Articles are hosted by Taylor and Francis Online.
Low-density foam balls with a diameter of ~1 mm were produced from a density-matched emulsion consisting of a resorcinol-formaldehyde (RF) aqueous solution (W) and an exterior oil of carbontetrachloride/(mineral oil) (O). Phase-transfer catalysts such as an alkyl amine were dissolved in the exterior oil, following which the catalyst moved into the RF solution from the exterior oil. A gelation process was monitored by a complete gelation test. When the basic catalysts were used at room temperature as a phase-transfer catalyst, gelation occurred within 30 to 120 min, whereas when the acidic catalyst was used, gelation occurred within 20 to 30 min at room temperature. When ~0.39 wt% of triethylamine and tri(n-butyl)amine in the oil phase were used, complete gelation took place. A basic catalyst with a long alkyl chain such as dimethyl(n-hexyl)amine did not induce gelation. The gelated balls obtained using the basic catalyst with a short alkyl chain were dried by extraction using supercritical fluid CO2 and the solvent was replaced with 2-propanol to produce the foam structure. Except 0.39 wt% tri(n-butyl)amine, the basic catalysts yielded foam balls with higher densities of 173 to 184 mg/cm3 as compared to those obtained from a benzoic acid catalyst, namely, 158 mg/cm3. The density difference can be attributed to the inclusion of the basic catalyst in the RF solution. Scanning electron microscopy images revealed a surface membrane formation, which can be explained by local concentration at the W/O interface. The cell size of the bulk foam was observed to depend on the catalysts, and it was surmised that the cell sizes varied because of the different gelation rates. A smooth surface membrane tri(n-butyl)amine was used as a catalyst. The membrane obtained on using a basic phase-transfer catalyst was smoother than that obtained on using an acid catalyst. Such a smooth membrane is useful for coating the ablation layer of foam capsule targets.