ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
H. Huang, S. A. Eddinger, R. B. Stephens, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 380-388
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-380
Articles are hosted by Taylor and Francis Online.
Rayleigh-Taylor instabilities are caused by features that affect shock velocity. These features can be statistically measured by radiography. We designed a precision radiography (PR) system that measures X-ray opacity variations in National Ignition Facility (NIF) ablator capsules to 10-4. Quantitative interpretation of the PR data is challenging and is the subject of this paper. The PR opacity power spectrum (PS) must be related to the NIF surface PS requirements (commonly known as the "NIF curves"). This relationship must be calculated for each specific shell. The compounding factors include X-ray spectra and spot size, detector resolution, shell diameter, coating thickness, dopant and impurity levels, and the coherency status of interface roughness between different layers. In this work, we developed a useful tool to quickly compute the NIF opacity curve (more precisely referred to as NIF "OD [optical depth] PS reference curve" in this paper) for any partially coated NIF shells or nonstandard developmental shells. This allows more rapid feedback on the quality of shells using only partially coated shells and enables benchmarking between the opacity (measured by a radiographic instrument) and surface roughness (measured by an atomic force microscope).