ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
H. Huang, S. A. Eddinger, R. B. Stephens, A. Nikroo
Fusion Science and Technology | Volume 55 | Number 4 | May 2009 | Pages 380-388
Technical Paper | Eighteenth Target Fabrication Specialists' Meeting | doi.org/10.13182/FST55-380
Articles are hosted by Taylor and Francis Online.
Rayleigh-Taylor instabilities are caused by features that affect shock velocity. These features can be statistically measured by radiography. We designed a precision radiography (PR) system that measures X-ray opacity variations in National Ignition Facility (NIF) ablator capsules to 10-4. Quantitative interpretation of the PR data is challenging and is the subject of this paper. The PR opacity power spectrum (PS) must be related to the NIF surface PS requirements (commonly known as the "NIF curves"). This relationship must be calculated for each specific shell. The compounding factors include X-ray spectra and spot size, detector resolution, shell diameter, coating thickness, dopant and impurity levels, and the coherency status of interface roughness between different layers. In this work, we developed a useful tool to quickly compute the NIF opacity curve (more precisely referred to as NIF "OD [optical depth] PS reference curve" in this paper) for any partially coated NIF shells or nonstandard developmental shells. This allows more rapid feedback on the quality of shells using only partially coated shells and enables benchmarking between the opacity (measured by a radiographic instrument) and surface roughness (measured by an atomic force microscope).