The Thermal Cycling Absorption Process (TCAP) is gaining recognition as a promising technology for hydrogen isotope separation in future fusion reactors, owing to its low cost, strong separation efficiency, and rapid operational throughput. This process capitalizes on the temperature-dependent interaction between palladium and hydrogen isotopes, enabling separation through cyclic temperature variations. However, the intricate interplay of multiple influencing factors has hindered the determination of optimal operational conditions for maximum efficiency. To address this challenge, this study developed a conservation model incorporating mass, energy, and momentum balance equations to simulate the behavior within the separation column. The model was implemented and numerically solved using the partial differential equation module in COMSOL Multiphysics. A comprehensive sensitivity analysis of key operational parameters revealed that an optimal operating temperature of approximately 0°C, along with an increased feed ratio of up to 0.3, significantly enhances separation efficiency during the initial feed stage. Furthermore, results obtained under full reflux operational conditions indicated that improved gas transfer dynamics between the plug flow reverser and the separation column considerably boost hydrogen isotope separation. Additionally, material properties such as the porosity of the separation medium and the palladium loading ratio were found to critically influence separation performance. These dynamic simulation results offer insights for optimizing the production technique and deepening the understanding of the separation mechanism.