ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yingwu Jiang, Fuhao Ji, Xiaoqiu Ye, Muyi Ni
Fusion Science and Technology | Volume 81 | Number 7 | October 2025 | Pages 741-754
Research Article | doi.org/10.1080/15361055.2025.2476855
Articles are hosted by Taylor and Francis Online.
The Thermal Cycling Absorption Process (TCAP) is gaining recognition as a promising technology for hydrogen isotope separation in future fusion reactors, owing to its low cost, strong separation efficiency, and rapid operational throughput. This process capitalizes on the temperature-dependent interaction between palladium and hydrogen isotopes, enabling separation through cyclic temperature variations. However, the intricate interplay of multiple influencing factors has hindered the determination of optimal operational conditions for maximum efficiency. To address this challenge, this study developed a conservation model incorporating mass, energy, and momentum balance equations to simulate the behavior within the separation column. The model was implemented and numerically solved using the partial differential equation module in COMSOL Multiphysics. A comprehensive sensitivity analysis of key operational parameters revealed that an optimal operating temperature of approximately 0°C, along with an increased feed ratio of up to 0.3, significantly enhances separation efficiency during the initial feed stage. Furthermore, results obtained under full reflux operational conditions indicated that improved gas transfer dynamics between the plug flow reverser and the separation column considerably boost hydrogen isotope separation. Additionally, material properties such as the porosity of the separation medium and the palladium loading ratio were found to critically influence separation performance. These dynamic simulation results offer insights for optimizing the production technique and deepening the understanding of the separation mechanism.