ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Ajit Bhat, Michael DeVinney, Travis K. Gray, Cody S. Wiggins
Fusion Science and Technology | Volume 81 | Number 7 | October 2025 | Pages 661-670
Research Article | doi.org/10.1080/15361055.2025.2476850
Articles are hosted by Taylor and Francis Online.
Current plasma-facing components (PFCs) used in helium-cooled divertor modules are complex structures with tungsten tile, steel sleeve components, and cartridges, all assembled in a helium-cooled multiple jet (HEMJ) structure. The goal of this project is to simplify the complex PFC design using additive manufacturing techniques to create a single integrated tungsten test article. Apart from the flexibility this opens up in exploring a wide array of geometries for the article, having a single integrated article significantly reduces the number of joints and parts in the article, thus reducing chances of leaks. A process called electron beam melting has shown to produce very high-density samples and unique geometries, enabling HEMJ or similar designs.
To validate and optimize this novel design, the model underwent a series of computational fluid dynamics and finite element analysis simulations to replicate steady-state heat flux in the divertors. The simulations presented in this study consider a steady-state base heat flux of 5 MW/m2, with water serving as the coolant. Future research will explore the use of helium as a coolant, simulate edge-localized-mode conditions, and include experimental validation. Since 3D-printed tungsten is anisotropic, the build direction versus build plane of the article are taken into consideration for the test article strength. Because of the high operating temperatures and low ductility of tungsten, thermal creep and brittle fracture are important failure mechanisms to consider. The cap is evaluated with various flow velocities and nozzle diameters, and an optimal design choice is made for which this cap will survive the divertor conditions with a conservative safety margin.