ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Norihiro Ikemoto, Hironori Shiraishi, Akira Tsuguchi, Mutsumi Nakamura, Naoki Mizuniwa, Satoshi Akamaru, Masanori Hara
Fusion Science and Technology | Volume 81 | Number 6 | August 2025 | Pages 580-590
Regular Research Article | doi.org/10.1080/15361055.2025.2456894
Articles are hosted by Taylor and Francis Online.
A tritium removal system (TRS) has been designed and installed. The TRS can remove tritium leaked into a workspace (100 m3). The tritium removal process in the TRS is a wet method in which leaked tritium compounds are oxidized to tritiated water by a catalyst, and the tritiated water is captured by a molecular sieve bed. The tritium removal performance (TRP) of the TRS was evaluated using H2 and CH4. The TRP is expressed by the relationship between the tritium oxidation efficiency of the catalyst bed and the water-capturing efficiency of the molecular sieve bed. The oxidation efficiency of CH4 increased with increasing the catalyst temperature, and it reached to 0.75 around 280°C. The water-capturing efficiency was found to be 0.97 during the operation.
The relationship between the oxidation efficiency and the water-capturing efficiency was reconstructed to chart and evaluate the tritium removal time. The chart evaluating the TRP of the TRS satisfied the design requirements. The design and evaluation method of this TRS can be applied to other TRSs using the wet method.