ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yuqian Chen, Lixin Yang, Yahong Xie, Jianglong Wei, Yuming Gu, Junjun Pan, Chundong Hu
Fusion Science and Technology | Volume 81 | Number 5 | July 2025 | Pages 505-514
Research Article | doi.org/10.1080/15361055.2024.2421586
Articles are hosted by Taylor and Francis Online.
CRAFT (Comprehensive Research Facility for Fusion Technology) is a large scientific device that is preferentially deployed for the construction of major national science and technology infrastructures. A negative ion–based neutral beam injection system with a beam energy of 400 keV, a beam power of 2 MW, and a beam duration of 100 s, it was designed to deliver an energetic neutral beam for fusion research. Among the crucial components of this system, the high-power negative ion source stands out, and the voltage holding capability of its accelerator with double-stage is a commonly encountered issue.
To address this concern, a comprehensive investigation has been conducted that focused on the gaps between the acceleration grids and grid supports in terms of voltage holding capability utilizing empirical formulas. The results of this investigation revealed that an acceleration gap of 81 mm and a grid support gap of 65 mm can be achieved through the implementation of empirical formulas, which aligns with the requirement of 200 kV for each stage. In addition, the preliminary experimental results showed that the voltage holding capability of the adjacent grids can reach up to 200 kV when the gap between the adjacent grids was designed to be 90 mm. These findings provide a foundation for the subsequent design of a high-power ion source characterized by both high energy and a large area.