ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Charles W. Hartman, John Thomas
Fusion Science and Technology | Volume 81 | Number 5 | July 2025 | Pages 495-504
Research Article | doi.org/10.1080/15361055.2024.2425585
Articles are hosted by Taylor and Francis Online.
A conceptual framework, supported and illustrated by computational modeling, is reported for a high-current snowplow discharge mode in coaxial electrodes consisting of a conical inductive storage section and a center conductor extension tapered in radius with a sigmoid curve from a 4-cm-radius to a 3-mm-radius stem. The inductive storage section can be loaded with Bθ flux by a relatively low-power snowplow discharge. In the sigmoid-tapered extension, the flux is shown to flow along the taper, increasing both field strength and flow velocity as it accelerates to a smaller radius, resulting in a petawatt flow of Bθ flux along the 3-mm-radius center conductor stem at 40 MA and 200 cm/µs.
Next, we present calculations of pinching a 0.8-cm-long pure deuterium-tritium (DT) target located as if in the stem. The pinch, formed when the petawatt flow passes over the target, was calculated to produce over half a gigajoule of DT fusion yield. Additionally, a half-scale 20-MA calculation was performed, and an approximate yield scaling formula was found with a dependence on the drive current to the fourth power.