ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
M. E. Abdel-Kader
Fusion Science and Technology | Volume 81 | Number 5 | July 2025 | Pages 471-484
Research Article | doi.org/10.1080/15361055.2024.2397619
Articles are hosted by Taylor and Francis Online.
The cascade discharge of the hollow plasma device is modeled using the snowplow model. In the model, one or three condenser banks discharge between the two electrodes, with a different time delay. The results were achieved with and without the hollow plasma’s multidischarge cascade. The cascade discharge aims to increase the plasma’s energy to keep the discharge current from breaking down and to keep the plasma column compressed for an extended period. Both the cascade and the single discharges affect the pinching time. The calculated induced magnetic field increases progressively until it reaches the pinch point, and then it decreases, at which point the total discharge current reaches a low value. The magnetic field distribution was calculated as a function of the plasma radius, both with and without the cascade discharge. The model demonstrates that, both with and without a cascade discharge, the magnetic field distribution is low at the tube’s exterior wall and increases toward the axis, reaching a maximum value of 138 kG in the case of a cascade discharge and 42.5 kG with a single discharge. A delay unit resembling the one found in a hollow plasma device is utilized to manually manage the electric circuit discharge simulation.