ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Adam Gootgeld, Collin Malone, Dale A. Hitchcock, Christopher S. Dandeneau
Fusion Science and Technology | Volume 81 | Number 5 | July 2025 | Pages 377-383
Research Article | doi.org/10.1080/15361055.2024.2440276
Articles are hosted by Taylor and Francis Online.
The lanthanum (La)-nickel (Ni)-aluminum (Al) hydrides (LANA: LaNi5−xAlx, x < 1.0) have been extensively studied for their high volumetric storage capacity and improved durability to maintain a single-phase CaCu5 structure through multiple absorption and desorption cycles. Pressure composition temperature (PCT) isotherms obtained for LANA have allowed for an understanding of the hydrogen sorption properties and the tunability of the PCT plateau region via doping. At the Savannah River Site, LaNi4.25Al0.75 (LANA0.75) has been utilized as a hydrogen storage material in the tritium facilities for decades. However, the structure characterization of the LANA0.75 hydride by X-ray diffraction has not yet been reported. This study examines LANA0.75 loaded to different hydrogen-to-metal atom ratios to elucidate both the position of hydrogen sites in the lattice and the structure of a fully hydrided β phase.