ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yuriy Ponkratov, Kuanysh Samarkhanov, Yerbolat Koyanbayev, Yuliya Baklanova, Yuriy Gordienko, Yevgeniy Tulubayev, Yekaterina Martynenko, Vadim Bochkov, Radmila Sabitova, Eldana Saparbek
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 300-309
Research Article | doi.org/10.1080/15361055.2024.2388421
Articles are hosted by Taylor and Francis Online.
The implementation of the ITER and DEMO projects currently includes the investigation of the structural and functional material properties of fusion reactors (FRs). Research to support the use of liquid metals and alloys as plasma-facing materials (PFMs) is a crucial area of work during the development of new FRs. Recent studies indicate the prospects of the tin-lithium (Sn-Li) alloy as a new liquid metal for protecting the in-vessel elements of a FR from the energy flows and high-density particles. Sn-Li alloy has been widely explored for utilization as PFM; however, there is a shortage of investigations being performed at nuclear reactors. The utilization of Sn-Li alloy as PFM in a FR must be fully justified by validated experimental results on tests under extremely high heat, plasma, and radiation loads.
The paper presents the methodology of in-pile experiments performed at the IVG.1M research reactor (Kurchatov, Kazakhstan) to study the interaction of hydrogen isotopes with Sn-Li alloy under neutron irradiation conditions. A Sn-Li sample with 73 at. % tin and 27 at. % lithium was manufactured. A unique experimental ampoule device (AD) with a Sn-Li sample had been developed and manufactured for in-pile tests. The results of neutron-physical and thermophysical calculations of designs of the experimental device with Sn-Li alloy under irradiation conditions of the IVG.1M reactor were performed to justify the AD design. Methodical experiments were performed to determine the temperature dependence of the change in the composition of the gas phase in the chamber with Sn-Li alloy. The time dependence of the partial pressure of hydrogen, tritium, and tritium-containing molecules in the AD volume with the Sn-Li alloy on its temperature under reactor irradiation conditions at a power of 3 MW has been studied. Key findings include the successful measurement of tritium release, the determination of temperature conditions for tritium generation and release, and the validation of our experimental AD for conducting such studies.