ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Claudia Dumitrescu, Sebastian Brad, Horia Necula, Mihai Vijulie, Alin Lazar, Catalin Brill, Oleksandr Sirosh, Aleksander Grafov, Andrii Rozhentsev
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 285-293
Review Article | doi.org/10.1080/15361055.2024.2434996
Articles are hosted by Taylor and Francis Online.
A computer simulation model developed in the ANSYS Fluent 2022 version R2 package was used for the engineering analysis required to design a counterflow matrix heat exchanger (MHE) for cooling a hydrogen stream. The theoretical data obtained with the simulation model were compared with the experimental data collected during the experimental campaigns carried out in the Cryogenics Laboratory of ICSI Rm. Valcea.
The MHE was tested for three test regimes obtained by theoretical correlations applicable to the current configuration. The Nusselt number, friction factor, and performances theorized by different authors, such as Gnielinski, Miheev, and Mikulin et al. were evaluated. This paper presents comparisons between the results obtained with the simulation model, the experimental values, and the theoretical models from the literature, highlighting the possibility of developing a mathematical model that can be applied to the calculation and design of a MHE.