ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
Claudia Dumitrescu, Sebastian Brad, Horia Necula, Mihai Vijulie, Alin Lazar, Catalin Brill, Oleksandr Sirosh, Aleksander Grafov, Andrii Rozhentsev
Fusion Science and Technology | Volume 81 | Number 4 | May 2025 | Pages 285-293
Review Article | doi.org/10.1080/15361055.2024.2434996
Articles are hosted by Taylor and Francis Online.
A computer simulation model developed in the ANSYS Fluent 2022 version R2 package was used for the engineering analysis required to design a counterflow matrix heat exchanger (MHE) for cooling a hydrogen stream. The theoretical data obtained with the simulation model were compared with the experimental data collected during the experimental campaigns carried out in the Cryogenics Laboratory of ICSI Rm. Valcea.
The MHE was tested for three test regimes obtained by theoretical correlations applicable to the current configuration. The Nusselt number, friction factor, and performances theorized by different authors, such as Gnielinski, Miheev, and Mikulin et al. were evaluated. This paper presents comparisons between the results obtained with the simulation model, the experimental values, and the theoretical models from the literature, highlighting the possibility of developing a mathematical model that can be applied to the calculation and design of a MHE.