ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Erlan Batyrbekov, Mendykhan Khasenov, Mazhyn Skakov, Yuriy Gordienko, Kuanysh Samarkhanov, Andrey Kotlyar, Alexandr Miller, Vadim Bochkov
Fusion Science and Technology | Volume 80 | Number 3 | May 2024 | Pages 520-529
Research Article | doi.org/10.1080/15361055.2023.2229682
Articles are hosted by Taylor and Francis Online.
This paper examines in situ spectroscopic measurements of nuclear-excited plasma of noble gases excited by 6Li(n,α)3H nuclear reaction products in the core of a nuclear reactor. A thin layer of lithium applied on the walls of the experimental device, stabilized in the matrix of the capillary-porous structure, serves as a source of gas excitation. During in-pile tests conducted at the IGR research reactor, thermal neutrons interact via the 6Li(n,α)3H reaction, and the emergent α-particles with a kinetic energy of 2.05 MeV and tritium ions with a kinetic energy of 2.73 MeV excite the noble gas (Ar) medium. The intensity of tritium release from the lithium layer in noble gases was estimated by the intensity of the α-line of the Balmer series of the tritium atom 3Hα (656.2 nm). A tritium release was observed at 710 K due to the beginning of desorption of thermalized tritium atoms dissolved in the liquid phase of lithium. The results are of interest in terms of clarifying the mechanisms and developing models that allow for describing the processes of generation, diffusion, and release of tritium from lithium during neutron irradiation.